Combined Automatic and Interactive
Timetabling Using Constraint Logic
Programming *

Hans-Joachim Goltz

GMD — German National Research Center for Information Technology
GMD-FIRST, Kekuléstr. 7, D-12489 Berlin
goltz@first.gmd.de

Abstract. We use Constraint Logic Programming and develop meth-
ods, techniques and concepts for a combined automatic and interac-
tive timetabling of university courses and school curricula. An instance
of such a timetabling system was developed for the Charité Medical
Faculty at the Humboldt University, Berlin. This paper looks at meth-
ods and techniques for solving this timetabling problem. An essential
component is an automatic heuristic solution search with an interactive
user-intervention facility. The user will, however, only be able to alter a
timetable or schedule such that no hard constraints are violated. Initial
application of our timetabling system has proved successful and demon-
strated the suitability of the methods used. The results obtained are also
useful for solving other problems.

1 Introduction

A timetabling problem can be defined as the scheduling of a certain number
of courses that have to satisfy specific conditions, in particular constraints re-
garding demands on limited resources. Timetabling has long been known to
belong to the class of problems called NP-complete (see, e.g., [7]). Different
software methods and approaches are available for automated timetabling (see,
e.g., [18]). Constraint Logic Programming over finite domains is a rapidly grow-
ing research field aimed at the solution of large combinatorial problems. The
Constraint Logic Programming approach has been applied with great success
to many real-life problems. A timetabling problem can be suitably modelled in
terms of a set of constraints. Various Constraint Logic Programming approaches
are discussed, e.g., in [1,2,4,12,14,16,15,19].

In [2], the Constraint Logic Programming language DOMLOG is used to solve
the timetabling problem of a computer science department. This language con-
tains user-defined heuristics for search methods and allows greater flexibility in
the declaration of “forward” and “look-ahead” constraints (compared with other
such languages). The timetabling problems of a computer science department

* in: E. Burke and W. Erben (eds.), Proc. PATAT 2000, Konstanz, August 2000, pp.
78-95

are also addressed in [15] and [1], the former using the Constraint Logic Pro-
gramming language ECL'PS® and the latter choosing the high-level constraint
language Constraint Handling Rules (CHR) as the implementation language.
The language CHR was developed by Tom Frithwirth [8]. Based on an existing
domain solver written in CHR, a solver for the timetabling problem was devel-
oped, requiring as little as 20 lines of code. [4] and [12] look at the application of
the Constraint Logic Programming language CHIP to a university’s examination
timetabling problems and describe the use of the global constraint cumulative.
Different labelling strategies are discussed in [12].

M. Henz and J. Wiirtz [14] present a solution for the timetabling problem of
a German college using the language Oz. This language was developed by the
DFKI at Saarbriicken (Germany) and is a concurrent language allowing func-
tional, object-oriented and constraint programming. G. Lajos [16] describes ex-
perience in constructing a large-scale modular timetable using Constraint Logic
Programming. Arithmetic constraints and the built-in constraint atmost are only
used for problem modelling. In [19], a hybrid approach for the automatic gener-
ation of university and college timetables is presented. This approach combines
features of constraint logic and tabu search. These two approaches are also dis-
cussed separately.

Our research is concerned with the development of methods, techniques and
concepts for a combined automatic and interactive timetabling of university
courses and school curricula. The timetabling systems must be flexible enough
to take into account special user requirements. An essential component is an
automatic heuristic solution search with an interactive user-intervention facility.
The user will, however, only be able to alter a timetable or schedule such that
no hard constraints are violated. Our research focuses on the following areas:
concepts and methods for modelling timetabling problems; examination of the
influence of different modelling techniques on the solution search; development
and comparative analysis of different methods and techniques for heuristic solu-
tion search; interactive user intervention in the solution search via a graphical
interface. The methods, techniques and concepts developed or under develop-
ment are tested and further elaborated on prototypical applications.

An instance of such a timetabling system was developed for the Charité Med-
ical Faculty at the Humboldt University, Berlin. The Constraint Logic Program-
ming language CHIP (version 5.2) was selected as the implementation language.
The global constraints and the object-oriented components built into CHIP are
particularly useful for problem modelling. The generated timetables were output
as HTML files and are available in the Internet. This initial application of our
timetabling system has proved successful and has demonstrated the suitability
of the methods used. The interactive component of our timetabling system is
very important. Without this component, it could not be used successfully for
generating the medical faculty’s timetables.

This paper contains a brief discussion of this application and the methods
developed to solve the timetabling problems of university courses. The experience
gained with this application can be used for other applications as well. This

paper draws together elements from [10,11] and presents them in revised and
extended form. Section 2 gives a brief description of the timetabling problem.
This is followed by a discussion of problem modelling. Some aspects of solution
search are treated in Section 4. The next section describes interactive timetabling
actions. Some remarks on the implementation are included and examples of
experimental results are given.

2 The Timetabling Problem

Students of medicine have to attend courses covering all medical fields. There
are different types of courses: lectures, seminars and practicals. The seminars
and practicals are held in groups of up to 20 students. Each student in a partic-
ular semester participates in one of these groups, there being between 10 and 24
groups per semester. The lectures and seminars may begin on the quarter hour
and may run for different lengths of time. The buildings of the Humboldt Uni-
versity’s Charité Medical Faculty are at two different locations in Berlin. Some
courses are also held in clinics and hospitals in other parts of Berlin. Lectures
on the same subject are given in parallel in different parts of the faculty. Thus
a student can choose which of the parallel lectures to attend.

At certain stages in their studies, the students have to attend practical
courses on different subjects. Such courses are held in a university clinic or
another hospital over a number of days, the course duration depending on the
subject being dealt with. A starting day for the practical course must be deter-
mined for each group and for each of the given subjects such that the constraints
are satisfied. These courses can only take place within a certain number of weeks.
During these weeks, no lectures or seminars are held. The practical courses can
therefore be scheduled independently. Unlike the schedules for practicals, the
schedules for lectures and seminars are the same week for week.

Other important constraints for this timetabling problem are:

C 1: There are restrictions with respect to the starting time for each course.

C 2: Two lectures on the same subject may not be scheduled for the same day.

C 3: The lectures, seminars and practicals of each group should not overlap.

C 4: The number of courses on the same subject held at any one time is limited.

C 5: Some seminars are only held during certain weeks.

C 6: Timetabling also involves allocating rooms for the individual lectures.

C 7: Some lectures can only be held in certain specified rooms; in some cases
only one room matches the requirements.

C 8: The varying distances between the different course locations must be taken
into account.

C9: In most cases, practical courses on the same subject must begin on the
same day or may not overlap. This means, if P; and P; are such courses,
they either start on the same day or they are not allowed to overlap.

C 10: For practical courses on the same subject, the number of different starting
days can be restricted by a maximum number.

C 11: For practical courses on the same subject, the number of different starting
days can be restricted by a minimum number.

C 12: The starting time preferences for courses and the preferred rooms for
lectures should also be taken into account where possible.

The last constraint is a soft constraint. The other constraints are hard con-
straints and must be satisfied. Other constraints not mentioned here are modelled
by simple arithmetic constraints and by the choice of domains. Note that the
constraints C9, C10 and C 11 are optional constraints and are not required for
the practicals of every subject.

A solution of the problem is offered by schedules for the different kinds of
courses that satisfy all given hard constraints. An automatic relaxation of hard
constraints is not allowed. If no solution is found, only the user is allowed to
modify the hard constraints.

3 Problem Modelling

3.1 Constraint Logic Programming

Constraint Logic Programming (CLP) is a generalization of Logic Program-
ming, unification being replaced by constraint handling in a constraint system.
CLP combines the declarativity of Logic Programming with the efficiency of
constraint-solving algorithms. Constraint Logic Programming with constraints
over finite integer domains, CLP(FD), has been established as a practical tool for
solving discrete combinatorial problems. Each constrained variable has a domain
that must first be defined. Such a variable is also called a domain variable. The
usual arithmetic constraints equality, disequality and inequalities can be applied
over linear terms based on domain variables and natural numbers.

A timetabling problem can be suitably modelled in terms of a set of con-
straints. The method chosen for problem modelling has a considerable influence
on the solution search. The success of the search often depends directly on the
model chosen, and the modelling options depend on the chosen contraint solver.
We use the constraint solver over finite domains of the Constraint Logic Pro-
gramming language CHIP. The global constraints built into CHIP are particu-
larly useful for problem modelling ([3]). Global constraints use domain-specific
knowledge to obtain better propagation results. Complex conditions on sets of
variables can be modelled declaratively by such constraints and can be used
in multiple contexts. Global constraints with specialized consistency methods
can greatly improve efficiency for solving real-life problems. Examples of global
constraints are cumulative, diffn and among.

The cumulative constraint was originally introduced to solve scheduling
and placement problems. This constraint ensures that, at each time point in the
schedule, the amount of resources consumed does not exceed the given limit. The
diffn constraint was included in CHIP to handle multidimensional placement
problems. The basic diffn constraint takes as one argument a list of n-dimen-
sional rectangles, where origin and length can be domain variables with respect

to each dimension. This constraint ensures that a given set of n-dimensional rect-
angles do not overlap. Special conditions of n-dimensional rectangles can also be
expressed by diffn constraints. The consistency methods for these constraints
are very complex because there are numerous possibilities for inferring new in-
formation, depending on which of the variables are known. The among constraint
was introduced in order to specify the way values can be assigned to variables.
There are different variants of this constraint.

A useful symbolic constraint is element (N,List,Value). It specifies that
the N** element of the nonempty list List of natural numbers must have the
value Value, where Value is either a natural number, a domain variable or a
free variable. There are also other variants of this constraint in CHIP.

3.2 Lectures and seminars

This section considers the representation of the conditions for lectures and semi-
nars. For each lecture and seminar, the starting time is represented by a domain
variable. If we assume that such a course can be held on five days of a certain
week between 8 a.m. and 8 p.m., then 5 x 12 x 4 = 240 time units have to be
considered. This means, initially, that the domains for the starting time variables
are defined by the natural numbers 1,2, ...,240. The attributes room, week and
location of a course may be domain variables if these values are unknown. The
possible values of these attributes are mapped into the natural numbers. The
choice of the domains includes restrictions of the values (constraints C1 and
C 7). Note that the capacity of a room is taken into account by the choice of
the domain of a room variable. With the exception of the last constraint, all
other constraints of the timetabling problem are directly represented by built-in
constraints. The last constraint C 12 is a soft constraint and is integrated into
the solution search.

If two lectures are not scheduled for the same day (C2), then one lecture
is scheduled at least one day before the other lecture. Since two lectures on the
same subject have the same features, we can determine which lecture is sched-
uled at least one day before the other. For example, assume that S; in 1..240
and S in 1..240 are the domain variables for the starting times of two such lec-
tures. Furthermore, let X in [48,96,144,192] be a new domain variable, where
{48,96, 144,192} are the last time units of the first four days. Then, the relations
S1 < X and X < Sy ensure the constraint C2. This method of modelling is
more efficient than the method suggested in [12] for the same constraint. How-
ever, our method can only be used if the two lectures have the same features.
The method given in [12] can also be used in other cases.

The constraints C3 (non-overlapping of a set of courses) and C4 (limited
resources for a set of courses) can be represented by cumulative constraints.
For example, let Si,S2,...,5, be the domain variables of the starting times of
a set of courses and let Dy, Ds,,...,D, be the corresponding lengths of time.
If Max is the maximum number of courses of this set that can be given at any

one time, then this constraint can be modelled by!:
cumulative([S, Sa,...,Su],[D1,Da,...,Dy],[1,1,...,1], Maz)

If a set of courses should not overlap, then such a constraint can be modelled
analogously, Mazx being equal to 1 in this case.

If starting times and rooms have to be determined for a set of courses
(constraint C6), these courses can be considered as a “two-dimensional rect-
angle” with the dimensions “time” and “room”, and these rectangles may not
overlap. The use of diffn constraints can ensure that this constraint is satisfied.
For example, let S1,S5,...,S5, be the domain variables of the starting times,
Dy, D>, ...,D, the corresponding durations, and let R;, Ra,..., R, be the do-
main variables for room allocations. A “two-dimensional rectangle” is then rep-
resented by [S;, D;, R;, 1], where the length of the dimension “room” is 1 unit.
The constraint

diffn([[SIaDlaRla]-]a [527D2aR27 1]7 LR} [SnaDnaRna]-]])

ensures that these rectangles do not overlap, i.e., at any one time, at most
one course is assigned to each room. This constraint can also be modelled by
the cumulative constraint, where additional domain variables Xi, Xo,..., X,
are required. For each i, the variables S;, R;, X; are linked by the equation
X; = NxR; +85;, where N is greater than or equal to the maximum num-
ber of time units. A similar method of modelling with cumulative constraints is
discussed in [4]. However, the domains of the variables are more reduced if the
conditions are defined using the diffn constraint.

The diffn constraint can also be used for modelling conditions C5 (some
seminars are only held during certain weeks) and C 8 (the varying distances be-
tween the different course locations must be taken into account). At least the di-
mensions “time” and “location” are used for modelling condition C 8. Breaks are
needed between courses. The length of a break depends on the distance between
locations. These breaks are considered as dummy courses. Such a dummy course
is defined for each course and each location. The starting time of a dummy course
has to be equal to the finishing time of the corresponding course. The duration
of a dummy course is defined by the symbolic built-in constraint element/3 and
depends on the selected location of the corresponding course. If this modelling
method is used, then a required break should not be longer than the duration
of a relevant course. This requirement is satisfied for our application.

3.3 Practicals

This section looks at the modelling of constraints for practicals. For each practi-
cal course P;, the starting day is modelled by a domain variable Start;, where
the domain represents the possible starting days. Note that restrictions with re-
spect to the starting days (constraint C1) is taken into account by the domain
choice. We consider the starting days of practical courses on the same subject in

! The unused arguments are not mentioned.

order to model the constraints C9, C10 and C11. These starting days can be
numbered consecutively and a corresponding number assigned to each practical
course. A domain variable StartNr; is introduced for each practical course P;
to represent these numbers. For the practicals on a specific subject, let n be
the maximum number of permitted or possible different starting days. Then, the
domain of StartNr; is defined by 1...n.

In the same way as for lectures and seminars, the constraints C3 (non-
overlapping of a set of practicals) and C4 (limited resources for a set of
practicals) can easily be represented by cumulative constraints. We generate
cumulative constraints for both kinds of domain variables.

Assume that Pp,..., P, are the practical courses on some subject (for
m groups), n is defined as above, and let D be the duration (in days) of these
courses. Note that the durations of the practical courses on the same subject
are not different. Furthermore, let Xi,...,X,, be domain variables with the
domains defined by the possible starting days. For each i,5 € {1,...,n} with
Jj =1+ 1, the constraint X; < X; is generated. Then, the starting days of the
practical courses considered are included in {X,...,X,}, if for each practical
course P; there is some X; such that Start; = X;. This condition can be
modelled by the following symbolic constraint:

element(StartNr;, [X1,...,Xn],[0,...,0],Start;, [all,all,all,all])

This constraint ensures that the equation Start; = Xsiartne; is true. The third
argument is generally a list [ki,...,k,] of natural numbers, this constraint
ensuring that the equation Start; = XstartNr; + kStartnr; 18 true. The last
argument is used for controlling propagation. The chosen last argument means
that the constraint is always woken if the domain of some variable belonging to
the constraint is changed.

If the number of different starting days is restricted by a maximum number
(constraint C10), then this constraint can be modelled by the choice of the
permitted number of starting days n .

Let Max be the number of days on which a practical course can be held. If we
assume that the practical courses Py, ..., P, have to satisfy the constraint C9,
then the maximum number n of permitted different starting days is restricted
by Max/D . The constraint X;+D < X; is generated for each 4,j € {1,...,n}
with 7 =i+ 1. From these constraints and the relations defined above, it follows
that for each P; and P; one of the following conditions holds: Start; = Start; ,
Start;+D < Start; or Start;+D < Start; . Thus, the constaint C9 is satisfied.

Now we assume that Pj,..., P, have to satisfy the constaint C11. This
means that the number of different starting days is restricted by a min-
imum number Min. Let MaxPar be the maximum number of practical
courses that can be held in parallel and let Ny,..., N, be domain variables
with the domains 0...MazPar. Such a domain variable N will represent
the number of elements belonging to the following subset of the practicals:
{ P, | Start; = Xy, 1 <i<m }. Note that Start; = X if StartNr; =k.
Obviously, the domain variables Ni,...,NN, have to satisfy the equation
Ni+...+ N, =m. The definition of the variables Ny,..., NN, can be modelled

by among constraints. For each k € {1,...,n}, the following constraint is gen-
erated?:

among(Ny, [StartNry,. .., StartNry,], [0,...,0], [k], all)

Such an among constraint is satisfied if exactly Ni-many variables of the set
{StartNry,...,StartNry,, } are assigned to the value k. The third argument is
generally a list of natural numbers with m elements. A deviation from the value
k can be expressed by this argument. The last argument is used for controlling
propagation.

For each subject, the practical courses have to satisfy these among constraints
and the equation with respect to the sum of Ny,..., N, . In the next section,
we regard these constraints as redundant. In order to satisfy constraint C11,
a further condition has to be fulfilled: only a determined number of the vari-
ables {N1,...,N,} can take on at most the value 0. This can also be mod-
elled by an among constraint, where Z is a domain variable with the domain
0...(n — Min):

among(Z, [N1,...,N,], [0,...,0],[0], all)

This constraint is satisfied if at most (n — Min)-many variables of Ni,..., N,
take on the value 0.

3.4 Redundant constraints

Redundant constraints are additional constraints derived logically from the other
constraints. Such constraints can improve the propagation properties. The search
space, for example, can be reduced. However, there is no guarantee of this, and
the computation time for a search step may be increased if redundant constraints
are added. We therefore investigated different possibilities of adding redundant
constraints.

The constraints C 3 (non-overlapping of a set of practicals) and C4 (limited
resources for a set of practicals) can be also modelled by diffn constraints.

For example, let Starty,...,Start,, be the domain variables of the starting
days of the practical courses on the same subject, let D be the duration of
these courses, and let MaxPar be the maximum number of courses that can
be given at any one time. For each of these practical courses, we add a domain
variable Par; with the domain 1...MaxPar. We view a practical course as
a “two-dimensional rectangle” with the dimensions “time” and “parallelism” .
Then, the constraint C4 can be modelled by

diffn([Start,, D, Pary,1],...,[Starty,, D, Pary,,1]).
If C3 is represented in this way, then Par; is equal to 1. We regard these

diffn constraints as redundant and assume that the two kinds of cumulative
constraints are generated in each case.

% In CHIP, this set of among constraints can be integrated into one special among con-
straint.

The among constraints described in Section 3.3 can be generated for the
practical courses on each subject. As mentioned above, these constraints are re-
dundant if they are not required for constraint C11. Such among constraints can
also be generated for the domain variables Starty, ...,Start,, . In this case, a
variable NN; must be defined for each possible starting day. Note that the equa-
tion Ni+...+N, =m is also generated if the corresponding among constraints
are generated for the practical courses of a subject.

For any two practical courses P; and P; on some subject, the following
conditional constraints concerning the relations between the two kinds of domain
variables can be added:

if Start; < Start; then StartNr; < StartNr; else StartNr; > StartNr;
if StartNr; < StartNr; then Start; < Start; else Start; > Start;

If such conditional constraints are added for all relations of this kind, normally
the number of these constraints is relatively large.

4 Solution Search

A constraint solver over finite domains is not complete because consistency is
only proved locally. Thus, a search is generally necessary to find a solution.
Often, this search is called “labelling”. The basic idea behind this procedure
is to select a variable from the set of problem variables considered, choose a
value from the domain of this variable and then assign this value to the variable;
backtracking must be used if the constraint solver detects a contradiction; repeat
this until all problem variables have a value and the constraints are satisfied. In
our timetabling system, the domain-reducing strategy is also used for the search.
This strategy is a generalization of the labelling method and was presented in

[9]:

— The assignment of a value to the selected variable is replaced by reduction
of the domain of this variable.

— If backtracking occurs, the unused part of the domain is taken as the new
domain for repeated application of this method.

A reduced domain should be neither too small nor too large. A solution is nar-
rowed down by this reduction procedure, but it does not normally generate a
solution to the problem. Thus, after domain reduction, assignment of values to
the variables must be performed, which may also include a search. The main
part of the search, however, is carried out by the domain-reducing procedure. A
conventional labelling algorithm can be used for the final value assignment. If a
contradiction is detected during final value assignment, the search can backtrack
into the reducing procedure.

The advantages of this method have been shown by many examples. However,
there are also problems where the domain-reducing strategy offers no benefits.
For instance, this method has neither advantages nor disadvantages for schedul-
ing the practical courses. For scheduling the lectures and seminars the advantages

of this method have been shown by our experiments. In particular, the different
breaks needed between courses can be better integrated into the solution search.

The search includes two kinds of nondeterminism: selection of a domain vari-
able and choice of a reduced domain concerning the selected variable. If labelling
is used, the reduced domain is one value. It is well known that the heuristic used
for variable selection exerts a considerable influence on the solution search. We
use a static ordering for variable selection based on an ordering for the courses.
There are two basic variants for sorting the seminars and the practical courses:
sorting by group (first all the courses of one group, then all the courses of another
group, and so on) and sorting by subject (first all the courses of one subject, then
all the courses of another subject, and so on). Our experience has shown that the
second variant is better. We therefore assume that each subject has a priority
and that the ordering of the seminars and the practical courses is determined by
these priorities, the second parameter for the ordering being the serial number
of the group. The lectures are also ordered by the priorities of the subjects.

The chosen heuristics for determining the reduced domain take into account
wishes with respect to starting times for lectures and seminars (constraint C12).
In the first step, it is attempted to reduce the domains of the variables such that
the expressed wishes are included in the reduced domain. Instead of preferred
time points, we consider intervals that include these points. More specifically, if
tp is such a time point, then the interval [tp—2,tp+ 2] is generally considered
(i.e., a difference of two quarter-hours in each direction). This is the default
interval, if no other interval is specified. Another difference may be given when
specifying the problem. The time intervals created by preferred time points are
called preferred intervals below. The lectures are scheduled before the seminars
are. The search methods used for scheduling lectures and seminars are slightly
different.

The seminars on a particular subject are held for a given number of groups.
Let us suppose that the number of different preferred time points given for the
seminars on a particular subject is large enough to allow all these seminars to be
easily scheduled at these time points if no other seminars are considered (but the
scheduled lectures have to be taken into account). We restrict the starting-time
variables of the seminars to the union of the corresponding preferred intervals.
Other time points are not considered for these variables. However, we do not
restrict the domains in this way if an interactive scheduling of individual courses
is carried out (see next section). Based on the given ordering, the domains of all
starting-time variables are reduced step by step to a preferred interval in the first
search step. Since the domains are reduced to an interval, the different durations
and the different breaks needed between two courses can be better taken into
account. In particular, the number of backtracking steps can be reduced by this
method in comparison with a conventional labelling algorithm. In the second
search step, values are selected for all domain variables. For this value selection,
a labelling algorithm is used which attempts to select the preferred values first.

The domains of the starting-time variables of the lectures are not reduced
to the union of the preferred intervals. In the first search step, we try to reduce

10

all starting-time variables of lectures to a preferred interval. If such a preferred
interval cannot be chosen, then the corresponding variable is reduced to another
time interval. Then, in the next search step, values are selected for all domain
variables.

Our experience has shown that in many cases either a solution can be found
within only a few backtracking steps, or a large number of backtracking steps
are needed. We therefore use the following basic search method: the number
of backtracking steps is restricted, and different heuristics are tried out. This
means that backtracking is carried out on different heuristics. With regard to
the problems discussed in this paper, the user can choose between different
methods for the solution search. In particular, the user can control the following
parameters: the number of attempts with different heuristics, the number of
permitted backtracking steps for one attempt, and the priorities of the subjects.

5 Interactive Search

The generation of a timetable can also be controlled interactively by the user.
The following timetabling actions are possible with the help of the graphical
interface:

— scheduling an individual course

— scheduling marked courses automatically

— removing marked courses from the timetable

— moving an individual course within the timetable
— scheduling the remaining courses automatically

These actions can be perfomed in any order or combination, and no automatic
backtracking is caused by such user actions. The user may, however, only alter
a timetable in such a way that no hard constraints are violated. If an individual
course is scheduled or moved, then the values that can be selected without caus-
ing any conflict are displayed graphically. These values are also determined using
a kind of forward checking (see [13] for inference rule forward checking). Thus,
selection of such a value does not directly result in a contradiction. However, a
solution obtained with this selection may not exist because the constraint solver
is not complete. The following program describes the basic algorithm used in
this check:

dom_check1([]1,_).

dom_check (DomVar) :- dom_check1 ([N|List] ,DomVar) :-
dvar (DomVar) , not N = DomVar,
1 1
domain(DomVar,ValueList), DomVar #\= N,
dom_checkl (LValue,DomVar) . dom_checkl(List,DomVar) .
dom_check(_). dom_check1([N|List] ,DomVar) :-

dom_checkl(List,DomVar) .

11

For a given domain variable DomVar, the procedure domain(DomVar,ValueList)
generates the list of elements ValueList belonging to the domain of DomVar .
The relation DomVar #\= N means that DomVar and N are different and, conse-
quently, that the value N is deleted from the domain of DomVar .

This interactive component of our timetabling system is very important.
Without it, our timetabling system could not be used successfully for the genera-
tion medical faculty’s timetables. The interactive component makes step-by-step
generation of a timetable possible. In some cases, such generation was necessary
to find a solution. Modifications of generated timetables are often required for
different reasons. Special wishes that are not represented by constraints can of-
ten be integrated by modifying an automatically generated or partially generated
timetable. The timetabling system ensures that no hard constraints are violated
by such modifications.

6 Implementation

The Constraint Logic Programming language CHIP was selected as the imple-
mentation language. The global constraints and the object-oriented component
built into CHIP are particularly useful for problem modelling. The main com-
ponents of our timetabling system are

graphical editor: specification of a timetabling problem

transformation: transformation of a problem description into an internal repre-
sentation and transformation of a state into an external description

graphical interfaces: graphical representation of timetables and interactions of
the user with the system

search: generation of constraints and solution search

HTML code: generation of HTML code for results

For each main component, there are different parts for the different sub-
problems relating to lectures, seminars and practical courses, respectively. For
instance, there are graphical interfaces for scheduling the lectures, seminars and
practical courses. There are common basic dates. The timetables can be gen-
erated relatively independently of each other. However, the timetables for the
lectures have to be generated first and the scheduled lectures are taken into
account when scheduling the seminars.

For representation of a timetabling problem, we used two phases: definition
of the problem, and the internal object-oriented representation. For the first
phase, definition of the problem, we developed a declarative language for problem
description. All the components of a timetabling problem can be easily defined
using this declarative language. In the second phase, the internal object-oriented
representation is generated from the problem definition. The object-oriented
representation is used for the solution search and the graphical user interface.
Output of the generated timetables is in HTML format. This means that the
results of the timetabling are available for further use elsewhere.

12

A timetabling problem can be specified using the graphical problem editor
or by using the problem description language directly. The problem description
language is also used for saving states of scheduling. In this way, incomplete
timetables can be saved. Changes in the parameters in the graphical problem
editor are also mapped into the problem description language.

The component search includes the generation of constraints and all strate-
gies, methods and options of solution search. There are also different schedules
for lectures, seminars and practical courses. This made it easier to try out dif-
ferent methods of solution search.

All the components of our timetabling system are implemented in CHIP.
About 1.6 Mbytes of program code are used for all these components. Note that
the component, “search” consists of about 190 Kbytes of program code.

7 Results

7.1 Applications

Our timetabling system was well received by the Charité Medical Faculty at the
Humboldt University. The timetables were generated quickly and were available
at a very early stage. The generation of timetables for this faculty had previously
caused problems and involved a great deal of manual work. Since 1998, the
faculty’s timetables have been generated using our timetabling system. This
system has been constantly improved since then.

Fig. 1. A timetable from the Internet

In most cases, an initial solution for a timetable was found within a few
seconds. In other cases, an initial solution was found within ten minutes. If an
initial solution could not be found within a short time, a solution was found
by an interactive step-by-step search within a few minutes. It proved possible
to generate a solution for all problems of our application. For different reasons,
an initial solution was generally modified interactively . Several variants of a

13

timetable were able to be tried out within a short time period. The results
were very well received by all the departments involved. The importance of a
combination of interactive and automatic search was also shown. The gener-
ated timetables were output as HT'ML files and are available in the Internet
under http://www.first.gmd.de/plan/charite. Figure 1 shows a timetable
of lectures from the Internet.

We have successfully used our timetabling system for other applications, too.
The timetables of a university and a college’s computer science departments were
generated within a few seconds. We also generated timetables for a school. Some
modifications are necessary, however if our system is used in a school.

7.2 Experimental results

This section presents some experimental results. We consider two practical in-
stances of our timetabling problems (summer semester 1999 and winter semester
1999/2000). In both cases, practical courses on ten different subjects are sched-
uled. 14 groups and 14 weeks are considered in the first case, and 20 groups and
16 weeks in the second. Figures 2 and 3 show two solutions to these problems.
Note that these solutions are interactively modified versions of solutions that
were generated automatically.

9.Wo. 10.Wo. 11.Wo 12.Wo. 13.Wo. 14.Wo. 1.Wo. 2.Wo I.Wo. 4Wo SWo GWo T.Wo O.We
mimd! mdmdt mimdf mdmdf mdmdf mdmdf mdmdf mdmdf mdmd? mdmdf mdmdf mdmdf mdmdf mdmdt
—— — — — — P S S S——— —

—
1 Gyn IMe Chi Mot SMe Al Uroe Al Kin
— — —_— — S — —— —— — i —— S——
2 Gyn Me SHe ||| mat ohi U g A Kin
— — p—— — — —— — e —
] " ™ ayn M Allg chi o hat L Ll Kin ure AMe
— — — — — t— — ——
4 - I¥e — Gm Ag Uro Mgt Chi Kin M AMe
— —_— —— —_—
] 1Me - SMe Alig Gyn || et Chi AMe Urs Kin
— — —_— — — —— e —
& Me Kin Gyn L o GMe M Chi Mg U
i —— N S—— S N S — — ——
7 Allg M SMe U G chi AMe Kin Ll e
e — s e i — — —— —
8 Alig S Kin Ihle — Gyn i Ura Al chi Mot
—ll L L —— —_—
y o __“;UW A R R L FRURSRURE L POO. . o RS oo
10 Kin Uro - e Al Gyn I Allg Chi SHe
1 e [k B e Us Mg Nt Oy e o
12 Kin g U - 1M M Mot Giyn AW chi
e m— e —— N S — — — —
1 || Nig" T U 0 e S WL AMe e O b
T ——— —— S S SE— - — —
1% Uro Gyn Mg K Nt Cai AMe _ IMe She

Fig. 2. A solution for the examples Fz 11, Ex 12, Ex 13

The examples Ex 11, Ex12 and Fx 13 are different representations of the
first case, and the examples Fx 21 and Ez 22 different representations of the sec-
ond. The only difference between the examples Fz 12 and Ex 13 is the priority
of one subject.

For a given ordering of practical courses, we define two different strategies
for assigning values to the variables Start and StartNr for each course:

14

9.Wo. 10.Wo. 11.Wo. 12.Wo. 13.Wo. 14.Wo. 15.Wo. 16.Wo. 1.Wo. 2.Wo. S.Wo. 4.Wo. 5.Wo. 6.Wo. 7.Wo. B5.Wo
mimdi mdmdi mdmdf mimdi mimdi mdmdi mdmdi mimdf mimdi mdmdi mdmdi mimdf mimdf mdmdi mdmdi mdmdf

2 G ma e e oo Wl || el o —
3 Bem G T W e G U

5 Rig " Mg G TG e e 0o

5 Bg e G T O e M We o

] T e W Gn

9 W O

10 |Hig Awe @ G

11 | e T Al

12 | Eg S

1 Sl e —

Fig. 3. A solution for the examples Ez 21, Ez 22

S 1: First, for all practical courses, values are assigned step by step to the variable
StartNr. Then, values are assigned step by step to the variable Start.

S 2: First, for all practical courses, values are assigned step by step to the variable
Start. Then, values are assigned step by step to the variable StartNr.

The following possibilities for adding redundant constraints are considered in
this paper (see also Section 3.4):

diffn: for the constraints C3 and C4, additional diffn constraints for both
kinds of domain variables

among-start: additional among constraints for the domain variable Start

among-nr: additional among constraints for the domain variable StartNr

if: conditional constraints for all relations between the two kinds of domain
variables

These possibilities are combined into 7 different methods for adding redundant
constraints. The methods are defined in Table 1. The sign “+” means that these
kinds of redundant constraints are added, and the sign “—” means that they
are not added.

Table 2 presents some computation results for several methods and the five
examples. We use the two strategies S1 and S2 defined above and 7 different
methods (a, b, ¢, d, e, g, f) for adding redundant constraints. Note that our
experiments also included other strategies and other combinations for adding
redundant constraints. Only a small number of results are presented in this
paper. For the search, the number of permitted search steps (backtracking steps)
was restricted to 1,000. The figures in the columns with the sign “#” show the

15

among
start nr diffn if

a — — — —
b — - + +
C - + - -
d - + - -
e - + - +
f - + - -
g - - - -
Table 1. Definition of methods

number of backtracking steps needed for the search. The sign “~” means that
no solution was found within the permitted search steps. All execution times
given are for a Sun ULTRA 1 (in seconds) and relate to the time needed for
the search.

Exr11 Er12 Ezr13 Ez21 Ez 22
method || # |sec | # |sec | # [sec | # |sec | # | sec
a - 6.4 - 4.3 - 4.4 - 6.3| 138 1.2
b - 284 - 12.0 -l 10.5 - 11.4| 69 2.6
[¢ 259 3.3 - 8.0| 246 2.2 0 0.7 0 0.6
S1| d 0 0.7 -| 289 14 0.8 0 1.4 0 1.4
e 259 4.4 - 9.6 242 3.0 0 0.8 0 0.8
f 0 0.8 - 34.0 14 0.9 0 1.6 0 1.7
g - 29.9 -| 15.6 -l 13.2| 33 2.6| 69 2.8
a 84 0.5 - 5.6 - 4.0 - 4.7 - 8.4
b 2 0.6| 186 3.3 - 27.8 - 11.5 - 26.2
[¢ 25 0.4 - 74| 84 0.9 - 9.6 - 10.1
S2| d 25 0.8 34 1.1 36 1.4 - 20.7 - 20.7
e 1 0.3 - 13.6| &4 1.3 0 0.7 -| 25.8
f 1 0.7 10 0.9 23 14 0 1.4 - 52.2
g 1 0.6 11 0.8 44 2.0 0 1.4 - 54.1

Table 2. Comparison of several methods

Interesting conclusions from the experimental results including the results not
represented here are:

— There is no one best search strategy. If only one of the above two strategies
is selected, then no solution is found for Ex 12 or FEx 22

— The best method for adding redundant constraints is method “f” .

— Although the computation time can be increased if redundant constraints are
added, the generation of redundant constraints is generally advantageous.
Without redundant constraints, no solutions were found for the examples
Ex12, Fx13 and Ez21.

16

— In order to generate the constraints for all relations between both kinds of
domain variables, 1,708 conditional constraints are generated for each of the
examples Ex 11, Ex 12 and Ez 13. 3,268 constraints of this kind are needed
for each of the other examples. Although the number of these redundant
constraints is relatively large, the additional time needed for the search is
comparatively insignificant.

— The examples Fz12 and Ex 13 show how a small change in the variable
ordering can affect the computation results.

8 Conclusions

Initial application of our timetabling system has proved successful and has
demonstrated the suitability of the methods used. From this application, we
were able to obtain useful information for our future work. Important conclu-
sions from our experience with automatic timetabling are:

— Constraint Logic Programming is well suited for combined automatic and
interactive timetabling.

— The interactive component is very important for successful practical appli-
cation.

— The chosen method of problem modelling has a considerable influence on the
solution search. If a better method of problem modelling is chosen, then the
solution search is robuster with respect to the heuristics used for the search.

— Global constraints are very useful for modelling complex conditions.

— The search space can be reduced considerably by adding redundant con-
straints.

— For solution search, the number of backtracking steps should be restricted
and different heuristics should be tried out.

— The search can be improved by using the domain-reducing strategy.

In particular, wishes regarding starting times and the different length of
breaks needed between courses (as a result of their being held at different
locations) can be better integrated into the search.

— A declarative problem description language is well suited for problem defi-
nition and for saving scheduling states.

Our future research on timetabling problems will include investigations of
heuristics for variable selection and continued study of the influence of different
modelling techniques on the solution search. The methods, techniques and con-
cepts developed or under development will also be tested on other applications.
Our timetabling system is currently being modified for scheduling a company’s
further education courses.

17

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Abdennadher and M. Marte. University timetabling using constraint handling
rules. In O. Ridoux, editor, Proc. JFPLC’98, Journées Francophones de Program-
mation Logique et Programmation par Constraintes, pages 39 —49, Paris, 1998.
Hermes.

F. Azevedo and P. Barahona. Timetabling in constraint logic programming. In
Proc. World Congress on Expert Systems, 1994.

E. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. J.
Mathematical and Computer Modelling, 20(12):97-123, 1994.

P. Boizumault, Y. Delon, and L. Peridy. Constraint logic programming for exam-
ination timetabling. J. Logic Programming, 26(2):217-233, 1996.

E. Burke and M. Carter, editors. Practice and Theory of Automated Timetabling
II, volume 1408 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Heidelberg, 1998.

E. Burke and P. Ross, editors. Practice and Theory of Automated Timetabling,
volume 1153 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Hei-
delberg, 1996.

T. B. Cooper and J. H. Kingston. The complexity of timetable construction prob-
lems. In [6], pages 183-295, 1996.

T. Frithwirth. Theory and practice of constraint handling rules. J. Logic Program-
ming, 37:95-138, 1998.

H.-J. Goltz. Reducing domains for search in CLP(FD) and its application to job-
shop scheduling. In U. Montanari and F. Rossi, editors, Principles and Practice
of Constraint Programming — CP’95, volume 976 of Lecture Notes in Computer
Science, pages 549-562, Berlin, Heidelberg, 1995. Springer-Verlag.

H.-J. Goltz. On methods of constraint-based timetabling. In C. Gervat, editor,
Proceedings PACLP 2000, pages 167-177. The Practical Application Company Ltd,
2000.

H.-J. Goltz and D. Matzke. University timetabling using constraint logic program-
ming. In G. Gupta, editor, Practical Aspects of Declarative Languages, volume
1551 of Lecture Notes in Computer Science, pages 320-334, Berlin, Heidelberg,
New York, 1999. Springer-Verlag.

C. Guéret, N. Jussien, P. Boizumault, and C. Prins. Building university timetables
using constraint logic programming. In /6], pages 130-145, 1996.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge (Mass.), London, 1989.

M. Henz and J. Wiirtz. Using Oz for college timetabling. In [6], pages 162-177,
1996.

M. Kambi and D. Gilbert. Timetabling in constraint logic programming. In Proc.
9th Symp. on Industrial Applications of PROLOG (INAP’96), Tokyo, Japan, 1996.
G. Lajos. Complete university modular timetabling using constraint logic pro-
gramming. In /6], pages 146-161, 1996.

K. Marriott and P. J. Stucky. Programming with Constraints: An Introduction.
The MIT Press, Cambridge (MA), London, 1998.

A. Schaerf. A survey of automated timetabling. Technical Report CS-R9567,
Centrum voor Wiskunde en Informatica, 1995.

G.M. White and J. Zhang. Generating complete university timetables by combining
tabu search with constraint logic. In [5], pages 187-198, 1998.

18

